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Abstract
Metabolic syndrome and type 2 diabetes mellitus constitute a major problem to global

health, and their incidence is increasing at an alarming rate. Non-alcoholic fatty liver disease,

which affects up to 90% of obese people and nearly 70% of the overweight, is commonly

associated with MetS characteristics such as obesity, insulin resistance, hypertension and

dyslipidemia. In the present study, we demonstrate that hepatic lipase (HL)-inactivation in

mice fed with a high-fat, high-cholesterol diet produced dyslipidemia including hyperch-

olesterolemia, hypertriglyceridemia and increased non-esterified fatty acid levels. These

changes were accompanied by glucose intolerance, pancreatic and hepatic inflammation

and steatosis. In addition, compared with WT mice, HLK/K mice exhibited enhanced

circulating MCP1 levels, monocytosis and higher percentage of CD4CTh17C cells.

Consistent with increased inflammation, livers from HLK/K mice had augmented activation

of the stress SAPK/JNK- and p38-pathways compared with the activation levels of the kinases

in livers from WT mice. Analysis of HLK/K and WT mice fed regular chow diet showed

dyslipidemia and glucose intolerance in HLK/K mice without any other changes in

inflammation or hepatic steatosis. Altogether, these results indicate that dyslipidemia

induced by HL-deficiency in combination with a high-fat, high-cholesterol diet promotes

hepatic steatosis and inflammation in mice which are, at least in part, mediated by the

activation of the stress SAPK/JNK- and p38-pathways. Future studies are warranted to asses

the viability of therapeutic strategies based on the modulation of these kinases to reduce

hepatic steatosis associated to lipase dysfunction.
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Introduction
Patients with Metabolic syndrome (MetS) and type 2

diabetes mellitus (T2DM) have a shorter lifespan

compared with the general population (Zambon et al.
2009). They constitute a major problem to global health,

and their incidence is increasing at an alarming rate due

to population aging and to sedentary lifestyle patterns
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include insulin resistance (IR), abdominal obesity, glucose

intolerance, hypertension and dyslipidemia.

Hypertriglyceridemia and high levels of non-esterified

fatty acids (NEFA) in the MetS promote abnormal

accumulation of lipids within the liver, in a form of

steatosis or non-alcoholic fatty liver disease (NAFLD)

(Bugianesi et al. 2005). Thus, NAFLD affects up to 90% of

obese people and nearly 70% of the overweight subjects,

and it is thought to be the hepatic event in the MetS. In

addition, NAFLD is commonly associated with MetS risk

factors such as obesity, IR, hypertension and dyslipidemia.

Albeit the precise mechanisms linking characteristics of

the MetS and NAFLD are not completely known, a

complex relationship exists between the two (Marchesini

& Marzocchi 2007, Mitsutake et al. 2011). In this sense,

an excess of glucose and triglycerides, which are key

components in the MetS, is produced by fatty liver (Anstee

et al. 2013, Yki-Jarvinen 2014). On the other hand, IR

development, which alters carbohydrate and lipid metab-

olism, increases triglyceride accumulation in the liver

(Samuel et al. 2010, Samuel & Shulman 2012). Moreover,

excess fat in adipocytes, which occurs in overweight and

obesity, aggravates fatty liver disease by increasing the

release of pro-inflammatory mediators such as MCP1, IL-6

and TNFa (Sahini & Borlak 2014). Of note, one of the main

contributions to steatosis in NAFLD is an excess of

circulating free fatty acids (FFA) and triglycerides which

are also characteristics of the MetS and IR.

Hepatic lipase (HL) is a key enzyme in lipid metab-

olism and biology that hydrolyses triglycerides and

phospholipids in lipoproteins, thus facilitating their

clearance and metabolism (Santamarina-Fojo et al. 2004,

Teslovich et al. 2010). HL deficiency in the mice produces

mild dyslipidemia including increased total cholesterol,

phospholipids and HDL-cholesterol (Homanics et al.

1995). Upon acute fat loading (Homanics et al. 1995) or

in combination with other genetic deficiencies such as

apolipoprotein E deficiency or LDL-receptor deficiency

(Mezdour et al. 1997, Freeman et al. 2007), HL inactivation

in the mice also produces hypertriglyceridemia and

atheroma lesions. Interestingly, HL deficiency did not

change body weight or food intake in the mice (Escola-Gil

et al. 2013). In humans, genetic studies have linked HL

gene polymorphisms to progression of abdominal obesity

and T2DM (Todorova et al. 2004). Reduced abdominal

obesity and weight loss in subjects are associated with

reduced HL activity and prevention of T2DM (Bergeron

et al. 2001, Todorova et al. 2004). Other studies have

shown that HL gene is associated with dyslipidemia
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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PY ONLYcharacterised by high levels of atherogenic LDL, low

HDL and high triglycerides (Teslovich et al. 2010). The

role of HL in cardiovascular disease progression in humans

is controversial and HL increased levels are beneficial in

patients with hypercholesterolemia (Dugi et al. 2001) but

detrimental in subjects with central obesity and IR

(Teran-Garcia et al. 2005, Zhang et al. 2006, Brunzell

et al. 2011). Therefore, the effect of HL in disease

progression is highly dependent on the underlying

lipoprotein and lipid phenotype (Brunzell et al. 2011).

Despite the preceding association studies, the effect of

HL inactivation in the glucose metabolism homeostasis

and in the development of fatty liver disease has not been

fully investigated. To this end, HL-deficient (HLK/K) and

WT mice were fed a high-fat, high-cholesterol (HFHC) diet

for four months or fed regular chow diet (RCD) and

glucose metabolism, hepatic steatosis, pancreatic charac-

teristics and the associated inflammation were analysed.
Materials and methods

Mice and diets

Animal care was in accordance with institutional guide-

lines and the 2010/63/EU directive from the European

Parliament. HLK/K (Jackson laboratories) and WT (Charles

River) mice were on C57BL/6J background. After weaning,

mice were maintained on a RCD (2.8% fat; Panlab,

Barcelona, Spain) and at two months of age, mice were

placed on a HFHC diet (10.8% fat, 0.75% cholesterol,

S4892-E010, Ssniff, Germany) for 16 weeks or left on RCD

for 16 more weeks.
Metabolic measurements

Plasma triglycerides, total cholesterol (WAKO, Neuss,

Germany) and non-esterified fatty acids (NEFA, SIGMA)

levels were measured using enzymatic procedures in

overnight-fasted mice. HDL-cholesterol (HDL-C) was

determined after precipitation of the apolipoprotein

B-containing lipoproteins with dextran sulphate/MgCl2

(SIGMA) (Gonzalez-Navarro et al. 2010). For the glucose

tolerance test (GTT), overnight-fasted mice received an

intraperitoneal injection of glucose (2 g/Kg of body

weight, BW, SIGMA) and plasma glucose and insulin

levels were analysed at different time-points using a

glucometer (Ascensia Elite, BAYER, Leverkusen, Germany)

and an ultrasensitive anti-mouse insulin ELISA (MER-

CODIA, Uppsala, Sweden) respectively (Gonzalez-Navarro

et al. 2007, 2008). Plasma glucose and insulin levels in feed
Published by Bioscientifica Ltd.
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morning. For the insulin tolerance test (ITT), 4 h-fasted

mice received an intraperitoneal injection of insulin

(0.5 U/Kg of BW ACTRAPID, NovoNordisk, Bagsvaerd,

Denmark) and plasma glucose levels were measured as

before (Gonzalez-Navarro et al. 2013). HOMA-IR index was

determined using the formula: fasting plasma glucose

(mmol/l)!fasting plasma insulin (mU/l)/22.5. Liver trigly-

ceride content was determined by tissue digestion and

saponification in ethanolic potassium hydroxide followed

by enzymatic measurement of glycerol content (Free

Glycerol Reagent, SIGMA) (Norris et al. 2003).
Pancreatic islet isolation and insulin secretion assay

For islet isolation, mice were infused with Krebs buffer

(127 mM NaCl, 5 mM KCl, 3 mM CaCl2, 1.5 mM MgCl2,

24 mM NaHCO3, 6 mM Hepes, 2 mg/ml glucose, 0.1%

albumin, equilibrated with 5% CO2 in O2) and their

pancreases were dissected and digested with collagenase-

NB8 (1 mg/ml, Serva, Heidelberg, Germany) at 37 8C in a

shaking waterbath for 20 min. Islets were handpicked

under stereoscope (Vinue et al. 2015). Insulin secretion

was evaluated by a glucose-stimulated insulin secretion

assay at low (2.8 mmol/l) and high (16.7 mmol/l) glucose

concentrations in KRBH buffer (140 mM NaCl, 2.5 mM

KCl, 2.5 mM CaCl2, 1 mM MgCl2, 20 mM Hepes, 2 mg/ml

glucose, 0.1% albumin). Six assays (five islets each) were

performed per condition. Insulin concentrations were

measured by ELISA. The stimulation index was calculated

as the ratio of glucose-stimulated insulin to basal insulin

normalised by the insulin content.
Liver and pancreas immunostainings

Livers and pancreases were sectioned from mice sacrificed

by cervical dislocation after perfusion with PBS and fixed

with 4% paraformaldehyde/PBS 4 h and paraffin-

embedded as described (Gonzalez-Navarro et al. 2013).

b-cell mass was measured as the islet area relative to

total pancreatic area (%) obtained from the analysis of

10–12 slides (separated 125 mm) per mouse stained with

an anti-insulin antibody (described in the following

paragraph). Lipid droplet (LD) images were obtained

from hematoxylin/eosin stained sections.

The immunohistochemistry protocol consisted of

peroxidase inactivation (H2O2 0.3% in distilled water),

antigen retrieval with Sodium Citrate buffer 10 mM, pH

6.5, blocking (horse serum 5%, 1 h, RT), incubation with

primary antibodies (rabbit polyclonal anti-insulin 1/200
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0219 Printed in Great Britain
PY ONLYdilution, sc-9168, Santa Cruz Biotechnologies; rat mono-

clonal anti-F4/80 1/50 dilution, MCA497G, AbD Serotec,

ThermoFisher, Kidlington, UK) followed by biotinylated

goat anti-rat or anti-rabbit secondary antibodies (1 h, RT,

1/500 dilution, sc-2491, sc-2041, Santa Cruz Biotechnol-

ogies), streptavidin-HRP (TS-060-HR, ThermoScientific,

Cheshire, UK) and DAB substrate (SK4100, Vector Labora-

tories, Burlingame, CA, USA). Slides counterstained with

hematoxylin were mounted with EUKITT (A10500, Delta-

lab, Barcelona, Spain). Images were captured with an

OPTIKAM-PRO5 digital camera mounted on a stereomi-

croscope (OPTIKA, Barcelona, Spain) and analysed by

computer-assisted morphometry (SigmaScan, Pro5).

Double immunofluorescences insulin/glucagon, insu-

lin/CD3C and insulin/Ki67 consisted of antigen retrieval

(Sodium Citrate buffer 10 mM, pH 6.5 for insulin/gluca-

gon and insulin/Ki67 and with Tris EDTA buffer 10 mM pH

9, for insulin/CD3C high pressure and temperature) and

blocking (horse serum 5%, 1 h, RT), incubation (overnight

at 4 8C) with primary antibodies (mouse monoclonal anti-

glucagon, 1/300, G2654, SIGMA and rabbit polyclonal

anti-insulin 1/200 dilution, sc-9168, Santa Cruz Bio-

technologies; mouse monoclonal anti-insulin 1/300,

I2018 SIGMA; rabbit monoclonal anti-Ki67, Clone

SP6,MAD-000310QD, VITRO) followed by incubation

(1 h at RT) with a goat anti-mouse IgG Alexa Fluor 594

and an anti-rabbit IgG AlexaFluor488 (1/200, A11005 and

A21206, Invitrogen) secondary antibodies. Nuclear stain-

ing was performed with DAPI (1/1000, 20 min, D1306,

Invitrogen) and slides were mounted with Slow-Fade Gold

reagent (S36936, Invitrogen) and analysed with an

inverted fluorescent microscope (LEICA DMI 3000B).
Enzyme-Linked ImmunoSorbent Assay (ELISA)

MCP1 and TNF-a circulating levels were determined in

isolated plasma from heparinised blood (10 U heparin/ml)

from mice using the Quantikine ELISA kits (R&D Systems,

Minneapolis, MN, USA).
Flow cytometry

Circulating monocytes were determined in 10 ml of

heparinised whole blood incubated for 30 min at RT

with Ly6C-PerCP (BD Pharmingen, Madrid, Spain) and

CD115-APC (Biolegend, San Diego, CA, USA). For lym-

phocytes, 10 ml of heparinised whole blood was incubated

for 30 min RT with 5 ml Brilliant Stain Buffer (563794, BD)

and with Brilliant violet (BV)-rat anti-mouse CD4 (562891,

BD), BV-rat anti-mouse CD8a (563068, BD), PE-hamster
Published by Bioscientifica Ltd.
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mouse CD3e (553066, BD). Incubation with lysing

solution (BD Facs Lysing solution) was done before

analysis by flow cytometry (FACSVerse BD Biosciences).

To detect functionally-polirised CD4CT lymphocyte,

100 ml of heparinised whole blood was stained with the

mouse Th17/Treg phenotyping kit (BD Pharmingen,

Madrid, Spain) to detect CD4CFoxp3C and CD4CIL17

cells. Analysis of Ly6Clow- and Ly6Chi-subsets were

determined in CD115C populations.
Western blot analysis

Liver protein lysates were obtained in the presence of the

ice-cold lysis TNG buffer (Tris–HCl 50 mM, pH7.5, NaCl

200 mM, Tween-20 1%, NP-40 0,2%) supplemented with

Complete Mini cocktail, PhosSTOP (Roche, Mannheim,

Germany), ß-glicerolphosphate 50 mM (SIGMA), 2 mM

phenylmethylsulfonyl Fluoride (PMSF, ROCHE, Man-

nheim, Germany) and 200 mM Na3VO4 (SIGMA). Protein

extracts (50–100 mg) were prepared in laemmli’s buffer and

analysed by 12% polyacrilamide gel electrophoresis and

western blot (Gonzalez-Navarro et al. 2013, Martinez-

Hervas et al. 2014). The primary antibodies used were:

rabbit polyclonal anti-Phospho-p38 (1/200, sc-17852-R,

Santa Cruz Biotechnologies), rabbit polyclonal anti-p38

(1/200, sc-535, Santa Cruz Biotechnologies), rabbit

polyclonal anti-Phospho-SAPK/JNK (1/200, Thr183/Tyr185,

9251 Cell Signaling), rabbit polyclonal SAPK/JNK (1/200,

56G8, 9258 Cell Signaling) and mouse monoclonal anti-

a-tubulin (1/500, sc-8035, Santa Cruz Biotechnologies).

The HRP-conjugated secondary antibodies (1/500, Santa

Cruz Biotechnologies) used were: anti-mouse IgG-HRP

(sc-2005) and goat anti-rabbit IgG-HRP (sc-2004). The

immunocomplexes were detected with an ECL Plus detec-

tion kit (ThermoFisher Scientific, Barcelona, Spain).
Gene expression analysis by quantitative real-time PCR

RNA (0.5–1 mg) from mouse liver obtained with TRIzol

Reagent (Invitrogen), was retrotranscribed with the Max-

ima First-Strand cDNA Synthesis kit and amplified with

Luminars Color-HiGreen/High ROX qPCR MasterMIX

(Fermentas, Madrid, Spain) on 7900Fast System. Results

were analysed with the provided software (Applied

Biosystems). The mRNA levels were normalised to

endogenous gene Cyclophilin expression and relativised to

WT mRNA levels. The primers were designed with the

primer express programme and were (Forward: Fw; Reverse:

Rv): cyclophilin Fw: 5 0-TGGAGAGCACCAAGACAGACA-3 0
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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PY ONLYand Rv: 5 0-TGCCGGAGTCGACAATGAT-3 0; Tnf-a Fw:

5 0-CCCACACCGTCAGCCGATTT-3 0 and Rv: 5 0-GTCTAAG-

TACTTGGGCAGATTGACC-30; Mcp1 Fw: 5 0-GCCCAGCA-

CCAGCACCAG-3 0 and Rv: 5 0-GGCATCACAGTCCG-

AGTC-3 0; Jnk1 Fw: 5 0-CAACGTCTGGTATGATCCTT-

CAGA-3 0; Rv: 5 0-GCTCCCTCTCATCTAACTGCTTGT-3 0;

p38a Fw: 50-GACTTTCCCTGTTGGACAGCTT-30; Rv: 50-CA-

ACAGACTGACCCGCTAAGG-30.

Statistical analysis

Data are presented as the meanGS.E.M. Differences were

evaluated using a two-tail, unpaired Student’s t-test and

were considered statistically significant when P%0.05

(GraphPad Prism Software Inc, La Jolla, CA, USA). Outliers

identified with Grubbs’ test (GraphPad Prism Software) were

not considered.
Results

Metabolic characterisation of WT and HLK/K mice on a

high-fat, high-cholesterol diet

Two-month-old WT and HLK/K male mice were fed with a

HFHCdiet for16weeksandwerecharacterised.HL-deficiency

increased total cholesterol (P!0.0001), HDL-cholesterol

(P!0.02), triglycerides (P!0.01) and NEFA (P!0.02)

(Fig. 1A). No changes were observed in BW between mouse

groups (Fig. 1B). Fasting glucose levels were not different

between genotypes but HLK/K mice exhibited augmented

glucose levels in fed state compared with WT mice (Fig. 1C,

P!0.02). Insulin levels were undistinguishable between

mice in both fed and overnight-fasted states (Fig. 1D).

Carbohydrate metabolism by GTT showed glucose

intolerance in HLK/K mice (Fig. 2A, top panel), as shown

by the increased area under the curve (glucose curve vs

time, AUCglucose right graph P!0.01), compared with WT

mice. Insulin levels during the GTT revealed impaired

glucose-stimulated insulin release in HLK/K mice as

revealed by decreased AUCinsulin (insulin curve vs time)

value, compared with that in WT mice (Fig. 2A, lower

panel P!0.03). No differences between genotypes were

found in the ITT, in the corresponding AUCglucose

(Fig. 2B) or in the HOMA-IR index (Fig. 2C) indicating

no difference in insulin sensitivity. Analysis of the in vitro

glucose-stimulated insulin secretion in isolated islets

from HFHC diet-fed mice, showed reduced secretion in

HLK/K mice compared with that of WT mice (Fig. 2D,

P!0.006). Thus, HL-deficiency in mice fed a HFHC diet

produces glucose intolerance and impaired glucose-

stimulated insulin-secretion.
Published by Bioscientifica Ltd.
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Figure 1

Plasmatic parameters in WT and HLK/K mice placed 4 months on a high-fat,

high-cholesterol diet. (A) Total cholesterol, HDL-cholesterol, triglycerides

and non-esterified fatty acids in mice. (B) Body weight, (BW) in both groups

of mice. (C) Plasma glucose levels in mice fasted overnight (left panel) and

in fed state (right panel). (D) Plasma insulin levels in mice fasted overnight

(left panel) and in fed state (right panel). Statistical analysis was performed

using Student’s t-test.
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HLK/K mice fed a high-fat, high-cholesterol diet

have increased hepatic triglyceride content

Bearing in mind the complex relationship between

NAFLD, dyslipidemia and glucose metabolism derange-

ment, hepatic analysis was next performed. Compared

with WT mice, HLK/K mice had augmented liver

triglyceride content (Fig. 3A, P!0.04) indicating increased

steatosis as shown by the hematoxylin-eosin stained

section analysis of both groups of mice (Fig. 3A images).

Immunohistochemical analysis of the F4/80 macrophage

marker also showed increased (kuppfer) macrophage

infiltration in the liver of HLK/K mice compared with

that in WT mice (Fig. 3B, P!0.03). Analysis of proin-

flammatory cytokine expression in the liver demonstrated

enhanced mRNA levels of Mcp1 in HLK/K mice compared

with those in WT mice (Fig. 3C, left panel, P!0.03). No

differences between both groups of mice were observed in

Tnfa mRNA expression (Fig. 3C, right panel).

These results indicate that HL-deficiency increases

fatty liver disease and hepatic inflammation in mice fed

with a HFHC diet.
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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Increased inflammatory state in HLK/K mice

Analysis of systemic inflammation showed increased

circulating MCP1 cytokine levels in HLK/K mice compared

with those for WT mice (Fig. 4A, PZ0.05). No changes were

observed in TNFa circulating plasma levels. Leukocyte

population analysis also revealed enhanced levels of

CD115C monocytes in HL-deficient mice compared with

those in WT mice (Fig. 4B, P!0.03). Similar percentages of

the proinflammatory Ly6Chi- and the patrolling Ly6Clow-

monocyte subsets were similar in both WT and HLK/K

mice (Fig. 4B, right panel). T-cell lymphocyte analysis

showed increased number of total CD3C (Fig. 4C, P!0.04)

and CD4CT-lymphocyte subset (Fig. 4C, P!0.04) without

changes in the percentage of the CD8CT-cells or in the

activated CD69C-T-cells. Analysis of circulating regulat-

ory (CD4CFoxp3C) T-cells showed no differences

between both groups of mice but Th17 subtype CD4CT-

cells were significantly increased in HLK/K mice compared

with that in WT mice (Fig. 4D, P!0.008).

Altogether these results indicate that HL-deficiency

in mice, increases inflammation and circulating
Published by Bioscientifica Ltd.
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Figure 2

HL deficiency produces glucose intolerance in mice placed on a high-fat,

high-cholesterol diet for 4 months. (A) Plasmatic glucose (top panel) and

insulin (lower panel) levels at the different time points during the GTT in

WT and HLK/K mice which were used to calculate the AUCglucose and

AUCinsulin (right panels). (B) Glucose levels (in percentage relative to the

initial glucose levels) during the ITT at 0.5 U/KgBW in 4 h-fasted WT and

HLK/K mice. The lower graph displays the AUCglucose parameter for the two

groups of mice. (C) HOMA-IR index in both groups of mice. (D) In vitro

insulin secretion of islets from WT and HLK/K mice. Statistical analysis was

performed using Student’s t-test.
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inflammatory cells including monocytes, CD3C and

CD4CT-cells and the Th17 T-subset cells expressing IL17.
Pancreas characterisation in HLK/K and WT mice

To explore the differences in glucose-stimulated insulin-

secretion between HLK/K and WT mice, pancreatic

characterisation was next performed. Analysis of pancrea-

tic islets by insulin immunohistochemistry demonstrated

no differences in the relative area occupied by b-cells

between HLK/K and WT mice (Fig. 5A). Similarly, no

differences were observed in the a/b-cell area ratio in

pancreatic islets of mice (Fig. 5B). b-cell proliferation

analysis measured as double Ki67/insulin-positive cells,

showed similar proliferative rates in HLK/K and WT mice

(Fig. 5C). Thus, these results indicate that the observed

differences in insulin-secretion were not due to differences

in b-cell mass or b-cell maintenance.

Given the increase in circulating inflammatory cells in

HLK/K mice, inflammatory infiltration was investigated

in the pancreas. Analysis of CD3C-cells in pancreatic

sections showed enhanced percentage of T-cells in the

exocrine pancreas of HLK/K mice compared with that in

WT mice (Fig. 5D, P!0.05). Moreover, analysis of
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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inflammatory foci (IF) identified as a mass of cells invading

the islets, also revealed augmented inflammation in the

exocrine pancreas next to islets in HLK/K mice compared

with that in WT mice (Fig. 5E, P!0.007). Thus, HL-

deficiency in the mice produces pancreatic inflammation.
Activation of stress-related pathways in HLK/K and

WT mice

Given the observed differences in inflammation and

previous studies showing increased activation of the

stress-MAPKinases associated with fatty liver disease

(Sahini & Borlak 2014) the activation of these pathways

was next evaluated. Protein lysate analysis of the p38

stress-pathway revealed increased (phospho)pp38 levels in

the liver from HLK/K mice compared with those in WT

mice (Fig. 6A, P!0.003). Similarly, analysis of the

activated SAPK/JNK (pSAPK/JNK) protein levels were also

higher in the liver of HLK/K mice compared with those in

WT mice (Fig. 6B, P!0.01). No differences in the p38 and

Sapk/Jnk mRNA levels were observed between genotypes

(Fig. 6C). These results indicate increased activation of the

stress kinases in HLK/K mice which is consistent with

increased inflammatory state.
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Figure 3

Liver characterisation in WT and HLK/K mice. (A) Analysis of triglyceride

content in liver from both groups of mice. Images of hematoxylin-eosin

stained sections showing lipid droplets (LD). (B) Macrophage content

(F4/80C cells relative to hepatic area) in hepatic cross-sections of mice.

Representative images are shown. (C) Quantification of the Mcp1 and Tnfa

hepatic mRNA levels normalised to Cyclophilin and relativised to WT mouse

mRNA. Statistical analysis was performed using Student’s t-test. A full colour

version of this figure is available via http://dx.doi.org/10.1530/JOE-15-0219.
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HL-deficiency is not sufficient to induce hepatic steatosis

in mice fed regular chow diet

Dietary cholesterol is an important risk factor for the

progression of NAFLD (Wouters, et al. 2008), therefore
D

C

%
C

D
4+

 F
ox

p3
+

0

20

40

60

%
 C

D
11

5

Ly6Clow Ly6Chigh

n=8

0

0.2

0.4

%
 W

hi
te

 b
lo

od
 c

el
ls

CD115+

0

2

4

6

8

n=8P<0.03

CD3+

%
 L

ym
ph

oc
yt

es

0

10

20

30

P<0.04

2

4

0

CD3+CA

B

n=26 n=2

P
la

sm
at

ic
 le

ve
ls

 (
pg

/m
l)

n=17 n=12 n=7 n=11

CD115+Ly6C+

0

50

100

MCP1

P=0.05

0

5

10

TNFα

Figure 4

Analysis of inflammation in WT and HLK/K mice. (A) MCP1 and TNF-a

circulating plasma levels in mice. (B) Percentage of circulating monocytes

identified as CD115C cells and percentage of Ly6Clow and Ly6Chi monocyte

subsets in HLK/K and WT mice analysed by flow cytometry. (C) Percentage

of circulating total and activated (CD69C) T-lymphocytes (CD3C) and
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mice fed RCD were also characterised (Fig. S1, see section

on supplementary data given at the end of this article).

HL-deficiency increased total cholesterol and triglycerides

(Fig. S1A, P!0.05 and P!0.01, respectively) but no
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Figure 5

Pancreatic islet characterisation in WT and HLK/K mice. (A) Quantification

of b-cell area (in percentage relative to pancreatic area) identified by anti-

insulin immunohistochemistry. (B) Islet a/b ratio in the pancreas of both

groups of mice. (C) Quantification of proliferating b-cells, identified as

double insulin/Ki67-positive cells relative to islet area determined by

inmunofluorescence. (D) T-cell infiltration in the pancreas identified as

CD3C-positive cells relative to pancreatic area in both groups of mice.

(E) Quantification of area occupied by inflammatory foci (IF) in pancreatic

regions next to islets in both groups of mice. Representative images of the

immunohistochemistry, immunofluorescence and stainings are shown.

Statistical analysis was performed using Student’s t-test. A full colour

version of this figure is available via http://dx.doi.org/10.1530/JOE-15-0219.
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differences were observed in BW, glucose or insulin

plasmatic levels between genotypes (Figure. S1B). Further

analysis showed impaired glucose tolerance, demon-

strated by increased AUCglucose, (Figure. S1C, right graph

P!0.05) in HLK/K mice and no changes in glucose-

stimulated insulin release, as revealed by similar AUCinsulin

(Fig. S1C, lower panel) or in insulin-sensitivity during the

ITT, as shown by similar AUCglucose (Fig. S1D). HL-

deficiency in RCD-fed mice produces glucose intolerance

but no changes in glucose-stimulated insulin-release.
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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Hepatic analysis in WT and HLK/K fed RCD revealed

no differences in liver triglyceride content and steatosis

(Fig. S2A, see section on supplementary data given at the

end of this article) as also shown by the hematoxylin-eosin

stained sections (images in Fig. S2A). Circulating

plasmatic levels of MCP1 and activation of the p38-stress

inflammatory pathway (Fig. S2B and C) were indistin-

guishable between mice indicating similar inflammation

in RCD-fed HLK/K and WT mice. Pancreatic analysis

revealed increased inflammatory foci, but not significant
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Figure 6

Stress-kinase expression in liver from WT and HLK/K mice. (A) Analysis of

p38 activated phosphop38 (pp38) and p38 protein levels in livers from both

genotypes. (B) Analysis of phospho SAPK/JNK and SAPK/JNK protein levels

in liver from both groups of mice. For quantification phosphorylated forms

were normalised to total p38 and SAPK/JNK protein levels. Representative

blots of the phosphorylated and unphosphorylated proteins of the kinases

are shown. Blots showing a-tubulin analysis is included as loading controls.

(C) Quantification of the p38 (left panel) and Sapk/Jnk (right panel) mRNA

expression levels in the mice. The mRNA expression levels were normalised

to cyclophilin mRNA levels and relativised to WT mouse mRNA levels.

Statistical analysis was performed using Student’s t-test.
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Research I ANDRÉS-BLASCO and others Steatosis in HL deficiency 227 :3 187
(Fig. S2D) in HLK/K mouse pancreas and no differences

in CD3C content between genotyopes (Fig. S2E). These

results indicate that HL-deficiency has no effect on hepatic

steatosis or inflammation in mice fed RCD.
Discussion

MetS and T2DM has become a major health burden to

global health, and their incidence is increasing at an

alarming rate (Wild et al. 2004). A complex relationship

between NAFLD, hypertriglyceridemia, glucose intoler-

ance and MetS exists (Bugianesi et al. 2005). In the present
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0219 Printed in Great Britain
PY ONLYstudy, we demonstrate that HL-deficiency combined with

a HFHC diet in the mice produces hypercholesterolemia,

hypertriglyceridemia, increased NEFA levels and glucose

intolerance. These metabolic alterations were

accompanied by increased hepatic steatosis, hepatic

macrophage infiltration and pancreatic inflammation.

Moreover, compared with WT mice, systemic inflam-

mation was enhanced in HLK/K mice which exhibited

monocytosis, higher percentage of the proinflammatory

CD4CTh17C-T-cells and augmented levels of MCP1.

Analysis of inflammatory stress pathways revealed

increased levels of the (activated) pp38- and pSAPK/JNK-

kinases in HLK/K mice suggesting a possible role of these

signalling-pathways in the metabolic alterations induced

by HL-inactivation. Interestingly, HLK/K mice fed RCD

diet exhibited glucose intolerance and dyslipidemia, but

not systemic inflammation or hepatic steatosis suggesting

that the dietary components play a main role in NAFLD

and inflammation induced by HL-deficiency. Thus,

NAFLD and inflammation seem to be secondary to

metabolic alterations (glucose intolerance and dyslipide-

mia). Altogether, these studies indicate a protective role of

HL in fatty liver disease associated with HFHC diet by

restoring dyslipidemia, glucose tolerance and by decreas-

ing inflammation.

Previous studies have shown that dyslipidemia, high

FFA and hypertriglyceridemia induced by lipase-

deficiencies promote hepatic steatosis and NAFLD. Thus,

hepatic depletion of adipose triglyceride lipase (ATGL)

in mice leads to severe liver steatosis (Ong et al. 2011).

Decreased activity of ATGL in the liver of IR patients has

also been associated with development of NAFLD (Kato

et al. 2008). Consistent with these findings, hepatic

overexpression of the hormone-sensitive lipase (HSL)

and ATGL promotes fatty acid oxidation, ameliorates

steatosis and improves insulin signal transduction in the

mice (Reid et al. 2008, Turpin et al. 2011). On the other

hand, loss of intracellular TGH/Ces3-lipase which, by

contrary, reduces blood lipids and improves glucose

tolerance, ameliorated hepatic lipid deposition (Wei

et al. 2010). Surprisingly, a previous study reported

decreased BW gain and reduced hepatic steatosis in HL-

deficient mice (Chiu et al. 2010). These seemingly

discrepancy between these later results and the findings

of the present study, might be related to the different

dietary regimens used in both studies. Chiu and colleagues

used an obesogenic diet (21% of fat and 0.15% of

cholesterol), which resulted in no differences in choles-

terol or in FFA levels while in the present study, the diet

contained a 10.8% fat and 0.75% of cholesterol which
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AUTHOR COproduced higher levels of triglycerides, NEFA and choles-

terol. In fact, in the present study when mice were fed RCD

HLK/K mice did not develop hepatic steatosis or inflam-

mation. Thus, HL-deficiency in combination with a HFHC

diet that causes dyslipidemia (hypertriglyceridemia,

increased NEFA and high cholesterol) results in hepatic

steatosis. Altogether, these studies suggest that elevated

NEFA generated from the high triglyceride levels induced

by lipase-deficiencies and the presence of dietary choles-

terol are key factors for developing hepatic steatosis.

Of note, HLK/K mice developed hypercholesterole-

mia, consisting mostly of high HDL-cholesterol levels,

which would rather appear as a protective mechanism of

disease progression. In fact, therapies targeted to raise

HDL-cholesterol are effective in treating dyslipidemia and

disease progression (Rayner et al. 2010, Waksman et al.

2010). Nevertheless, consistent with our findings, recent

studies have shown that chronic increased HDL-choles-

terol levels produced by some of these therapies, such as

long-term therapeutic silencing of miR-33 in mice

challenged with a high-fat diet, produced moderate

hypertriglyceridemia and hepatic steatosis (Goedeke

et al. 2014). Altogether, these data suggest that modu-

lation of lipases that develops with ‘toxic’ dyslipidemia

(hypercholesterolemia, hypertriglyceridemia and high

FFA) promote hepatic steatosis and NAFLD.

NAFLD is frequently associated with hepatic IR and

MetS (Sabio et al. 2008, Yang et al. 2009, Gruben et al.

2014). Thus, while IR development increases triglyceride

accumulation in the liver (Samuel et al. 2010, Samuel &

Shulman 2012), fatty liver produces an excess of glucose

and triglycerides, which are key components in IR and

MetS (Anstee et al. 2013, Yki-Jarvinen 2014). Consistently,

other studies have shown that decreased hepatic steatosis,

induced by lipase (ATGL) overproduction is accompanied

by improved insulin sensitivity and insulin-signalling

(Turpin et al. 2011). In the study presented here, hepatic

steatosis in HLK/K mice was accompanied by higher

glucose levels in fed state and glucose intolerance.

However, HOMA-IR index and sensitivity to insulin in

HLK/K mice were similar to those in WT mice indicating

no altered insulin sensitivity. Thus, the delayed glucose

clearance observed in HLK/K mice could be caused by

defective insulin secretion by the b-cells. In fact, insulin

secretion during the GTT and in isolated islets revealed an

impaired capacity of glucose-stimulated insulin release in

HLKdeficient mice. Analysis of the pancreases in HFHC-

diet fed mice did not revealed differences in b-cell mass but

HLK/K mice exhibited inflamed pancreas (with increased

T-cells and inflammatory foci) which could mean
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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PY ONLYpancreatic damage affecting pancreas functionality. In

support of this hypothesis, high concentrations of FFA,

which are present in the plasma of the lipoprotein lipase

(LPL)-deficient mice and in patients with hypertriglycer-

idemia, lead to pancreatic acinar cell damage and are risk

factors for acute pancreatitis (Yang et al. 2009). Interest-

ingly, a case-report study showed association between

decreased activities of LPL and HL, hypertriglyceridemia

and acute pancreatitis (Fujita et al. 2010). Altogether, these

studies suggest that hypertriglyceridemia and increased

FFA might affect glucose homeostasis by modulating

insulin sensitivity but lipase-deficiencies also might

impair pancreatic function by promoting tissue

inflammation.

Low grade inflammation is also a characteristic of

advanced hepatic steatosis or nonalcoholic steatohepatitis

(NASH) (Sabio et al. 2008, Yang et al. 2009, Gruben et al.

2014). Fatty liver in HLK/K mice was accompanied by

augmented hepatic inflammation (macrophage content

and Mcp1 mRNA levels) and by increased systemic

inflammation including higher circulating MCP1 levels,

monocytosis and higher percentage of T-cells. In addition,

CD4CTh17 T-cells, which have been associated to chronic

inflammation (Ramesh et al. 2014), were also significantly

augmented in HLK/K mice compared with those in WT

mice. Therefore, HL-deficiency in the mice fed a HFHC

diet, which provides dietary cholesterol, produced

advanced NAFLD or NASH. HLK/K and WT mice fed

RCD did not develop systemic inflammation or hepatic

steatosis indicating a role of the HFHC diet in the

development of fatty liver. Consistent with our findings,

dietary cholesterol has been shown to be sufficient to

cause hepatic inflammation in steatosis in hyperlipidemic

mouse models (Wouters et al. 2008). Altogether, these

results indicate that the dyslipidemia in fatty liver disease

that develops with high cholesterol levels also enhances

the risk of developing inflammatory steatosis or NASH.

Several characteristics of the NAFLD progression, such

as hepatocyte ballooning, lead to activation of the stress-

MAPKinase signalling and previous studies have linked

activation of the inflammatory stress-MAPKinases with

progression of fatty liver disease (Sahini & Borlak 2014).

In this sense, the activation of JNK as a main mechanism

for the development of steatohepatitis has been largely

described (Schattenberg et al. 2006, Tuncman et al. 2006,

Singh et al. 2009). Others have shown a relevant role of

p38-activation in fatty liver disease (Menghini et al. 2012,

Nio et al. 2012, Song, et al. 2014). In addition, NEFA

liberated by HSL activate both p38 and JNK, and p38

mediates proinflammatory cytokine expression in adipose
Published by Bioscientifica Ltd.
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AUTHOR COtissue (Mottillo, et al. 2010). On the other hand, lipid-

droplet formation in monocytes is mediated by p38 and

SAPK/JNK activation (Guijas et al. 2012). In the line of

these investigations, when mice were fed a HFHC diet,

activation of the p38 and SAPK/JNK-signalling pathways

was increased in the liver of HLK/K mice compared with

that in WT mice. Thus, our investigations suggest that,

in HFHC diet, activation of p38 and SAPK/JNK stress-

pathways seems to mediate progression of hepatic

inflammation, and steatosis associated with the glucose

metabolism impairment and dyslipidemia (hypercholes-

terolemia, hypertriglyceridemia and increased NEFA)

induced by HL-deficiency.

In summary, the present study demonstrates that the

dyslipidemia consisting of hypercholesterolemia, hyper-

trigliceridemia and increased NEFA induced by HL-

deficiency in combination with a HFHC diet, produces

hepatic steatosis, hepatic and pancreatic inflammation

and glucose intolerance and suggest a protective role of HL

in the development these metabolic alterations. These

changes were accompanied by an increase in systemic

inflammation with enhanced percentage of monocytes

and CD4CTh17-T-cells and MCP1 circulating levels.

These events seem to be mediated, at least in part, by the

activation of the stress p38- and JNK-signalling kinases in

the liver suggesting that modulation of these kinases

might prevent fatty liver disease-induced by dyslipidemia

and HFHC diet. Future studies are warranted to assess the

viability of therapeutic strategies based on the modulation

of these kinases to reduce hepatic steatosis/NAFLD, tissue

(hepatic and pancreatic) inflammation and glucose

intolerance associated to lipase dysfunction.
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